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Abstract

This paper studies how differences in portfolio choice between households help explain the

highly unequal wealth distribution seen in the data. It has been well documented that par-

ticipation rates are substantially smaller than the ones predicted in standard models of port-

folio choice. Also, both participation rates and risky shares are highly increasing in wealth.

However, both features are usually absent in workhorse models of wealth accumulation. We

introduce portfolio choice and adjustment frictions into an otherwise standard model of house-

holds saving behavior. Calibrating it to U.S. household-level data, we show that the model is

able to provide a better fit of the wealth distribution, while being consistent with well-known

facts of households’ portfolio choices. In particular, the model explains roughly half of the

gap between top wealth shares predicted by traditional models of wealth accumulation (e.g.

Aiyagari, 1994) and the data.
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1 Introduction

Understanding the right skewed shape of the wealth distribution has been a long standing question

in economic debate. This question dates back to Pareto (1896) and has gained increasing interest

given recent trends in wealth inequality in the U.S. (Piketty and Zucman, 2014; Saez and Zucman,

2016). In fact, top 1% of households in the U.S. own 46% of total financial wealth whilst the

bottom 50% owns less than 1%.1

Differences in households wealth accumulation can arise in several ways. For instance, they

can be produced by different savings rates or different returns on savings across the wealth distri-

bution. The first channel is commonly asserted in popular debate, however recent evidence from

Fagereng, Holm, Moll and Natvik (2019) suggest that net savings are rather flat across the wealth

distribution.2 The second channel claims that richer households earn a higher return out of each

dollar saved. The latter channel is supported by recent empirical evidence that documents returns

to savings increasing in wealth (Fagereng, Guiso, Malacrino and Pistaferri, 2020; Bach, Calvet and

Sodini, 2020). In fact, Fagereng et al. (2020) finds that this result holds even within narrow asset

classes. These results suggest that there is a scale dependent component of wealth accumulation

as a whole, as well as an effect on the return on savings within specific assets (type dependence).3

This paper intends to shed light on the role of households portfolio choices in explaining

wealth inequality. To do so, we present a model that incorporates well-known facts from house-

holds balance sheets absent in workhorse models of wealth accumulation. In particular, we in-

troduce a quantitative two-asset heterogeneous agent model with portfolio adjustment frictions

and idiosyncratic shocks to both income and wealth. The model builds up from the traditional

Bewley-Huggett-Aiyagari model but with two assets as in Kaplan, Moll and Violante (2018).4

A well-known empirical regularity documented in the literature is that both participation

rates and shares (out of total wealth) invested in risky assets are substantially smaller than in the

workhorse models of portfolio choice (Merton, 1969; Samuelson, 1969). Furthermore, both statistics

are highly increasing in wealth. These facts are in stark contrast with the positive and independent

of wealth risky asset share predicted in these models. Moreover, these facts are also absent in most

models of wealth accumulation. Therefore, this paper intents to build a bridge between empirical

1Source: 2019 U.S. Survey of Consumer Finances.
2They study saving rates using administrative records from Norway. Net savings refer to the change in house-

hold’s net worth holding asset prices constant. Net saving rate refers to net savings out of total income.
3Perhaps the most intuitive way to characterize scale dependence may be that transactions in financial markets

often require transaction fees, which are decreasing in the scale of the investment. Alternatively, type dependence
may be related to heterogeneous investment opportunities or abilities to process information.

4For the solution method we rely on the upwind finite-difference method proposed by Achdou, Han, Lasry, Lions
and Moll (2017) to compute both households policy functions and the stationary distribution of the economy.
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regularities in households finances and quantitative models of wealth accumulation.

Introducing non-convex adjustment costs allows us to replicate these facts by ruling out house-

holds at the bottom of the distribution and thus giving rise to portfolio heterogeneity and with

that heterogeneous returns. The intuition of how it affects inequality is somewhat similar to other

recent models (e.g. Hubmer et al., 2020) where richer households hold riskier portfolios and ac-

cumulate more wealth through excess returns of risky assets. The adjustment cost also generates

inertia, as portfolio re-balancing is costly, which affects households more exposed to the risky asset

(the one subject to the adjustment cost), creating a “saving by holding” effect as in Fagereng et al.

(2019).

We find that the calibrated model is able to narrow the gap in top wealth shares in roughly

half compared to the frictionless benchmark. We then perform a counterfactual analysis to show

the amplifying effect of the scale dependence as it interacts with households precautionary savings.

This analysis also allows to decompose changes in top wealth shares into luck and scale, where the

latter accounts for roughly 90%.5

Adjustment frictions are modeled using non-convex adjustment costs as in several papers of

the portfolio choice literature. This assumption relies on empirical evidence from Vissing-Jorgensen

(2002) that finds trading frequencies increasing in wealth. Moreover, the resulting inertia created

by such friction is consistent with findings in the household-finance literature that document the

relatively unresponsive behavior of households out of changes in wealth (Brunnermeier and Nagel,

2008; Calvet, Campbell and Sodini, 2009). In the calibrated model, introducing a relatively small

adjustment cost (0.75% percent of adjusters stock) is able to generate a large inaction region in

households portfolio decisions. Further, we show that much of the inaction comes from both ends

of the state-space.

Therefore, the contribution of this paper is twofold. First, the quantitative model is able

to reconcile roughly half of the gap in top wealth shares while also taking into account stylized

facts from households balance sheets absent in the previous literature. Second, by performing

counterfactual exercises, we shed light on how adjustment frictions are key to understand top

wealth shares. As the adjustment cost interacts with households precautionary motives, small

changes to households savings affect accumulation and thus participation rates, returns to savings

and so on.

Related Literature. This paper is situated within three strands of literature. First, it is

related to a long-standing literature on wealth inequality.6 This literature dates back to Pareto

5We use the term luck to refer to different realization of idiosyncratic shocks across households.
6For a thorough review of the literature, see Benhabib and Bisin (2018) and references therein.
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(1896) with the notion that upper tail of the wealth distribution follow a power law.7 Similarly,

random growth theories of the wealth distribution include Wold and Whittle (1957) and Stiglitz

(1969). More recently, Piketty and Zucman (2014) present empirical evidence on the evolution of

the wealth-to-income ratio on developed economies, while Saez and Zucman (2016) estimates the

wealth distribution by using detailed U.S. households balance sheets and tax data.8

In the same line, recent empirical work highlights the importance of capital gains for wealth

inequality (Feiveson and Sabelhaus, 2019; Fagereng et al., 2019; Kuhn et al., 2020; Mart́ınez-

Toledano, 2020). For instance, Fagereng et al. (2019) finds that saving rates across the wealth

distribution crucially depend on whether they include or not capital gains.9 This is explained

because richer households own assets that experience persistent capital gains and, unlike predictions

from the permanent income hypothesis, hold onto them (which they term as “saving by holding”).

Further, a recent literature has documented empirically the importance of asset prices in wealth

inequality (Fagereng et al., 2016, 2020; Bach et al., 2020). Motivated by these findings, an emerging

theoretical literature has started to emphasize the importance of portfolio choice, asset prices and

heterogeneous returns to saving in wealth inequality (Favilukis, 2013; Gomez, 2018; Hubmer et al.,

2020; Xavier, 2020).

Second, this paper is related to the plethora of research regarding households portfolio choice.

This literature was born with seminal contributions of Merton (1969) and Samuelson (1969). Both

authors proposed analytic models with closed-form solutions and two sharp predictions: (i) agents

should participate at all ages in risky asset markets. (ii) risky share is independent of both age and

wealth. However, both predictions are at odds with micro data that consistently (through time

and across countries) has documented a surprisingly low participation rate among poor households

and a steeply increasing risky share across the wealth distribution.10 This discrepancy is most

likely explained by unrealistic assumptions in the model as frictionless financial markets and the

absence of labor income risk.

Thus, several papers, though mostly in life-cycle settings, have attempted to match micro data

estimates by adding more realistic features to the workhorse model.11 Among the most common

features, many incorporate fixed adjustment costs (Duffie and Sun, 1990; Gomes and Michaelides,

2005; Gabaix and Laibson, 2001) and or idiosyncratic labor income risk (see e.g., Chang et al.,

7A random variable S follows a power law if there exist k, φ > 0 such that Pr (S > x) = kx−φ for all x.
8Also, a prominent literature (e.g., Gabaix, Lasry, Lions and Moll, 2016) studies quantitative models with the

intention of matching micro estimates on both the thick tail inequality and its speed of change.
9Net savings rate follows from the standard definition of consumption plus savings equal income, whilst gross

saving rate include capital gains.
10See Mankiw and Zeldes (1991); Wachter and Yogo (2010).
11See e.g., Bodie, Merton and Samuelson (1992); Heaton and Lucas (1997); Viceira (2001); Haliassos and

Michaelides (2003); Cocco, Gomes and Maenhout (2005); Gomes and Michaelides (2003, 2005); Fagereng, Got-
tlieb and Guiso (2017) and Chang et al. (2018).
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2018). Another papers have gone further in the attempt to match life-cycle dynamics of portfolio

choice by incorporating per-period participation costs and rare disaster events (Fagereng, Gottlieb

and Guiso, 2017).12 This paper takes basic features of this literature for the construction of the

model.

From an empirical standpoint, evidence from Vissing-Jorgensen (2002) on trading frequencies

suggest the existence of fixed adjustment costs. Similarly, she finds that small per period adjust-

ment costs may explain the non-participation of half the nonparticipants.13 Note that beyond

direct monetary fees, participation costs in risky assets may be closely related to the opportu-

nity cost (e.g. in terms of labor or leisure) of monitoring and gathering financial information for

investment decisions.14

Third, this paper intends to contribute to the ongoing strand of literature that incorporates

rich sources of heterogeneity and incomplete markets to macro models. In that sense, this paper is

closely related to workhorse heterogeneous agent models (Bewley, 1986; Huggett, 1993; Aiyagari,

1994) but extended to a two asset environment as in Kaplan et al. (2018). Further, this paper takes

advantage of the finite-difference method proposed by Achdou et al. (2017) to solve the model and

to compute the stationary distribution.

Road map. The rest of the paper is organized as follows. Section 2 presents the main source

of data used in this paper, descriptive statistics and some stylized facts. Section 3 introduces

the baseline heterogeneous agent model. Section 4 presents the calibration strategy and the main

results of the baseline model. Section 5 discusses potential extensions to the baseline model and

its implications. Finally, Section 6 concludes.

2 Data and Stylized Facts

2.1 Data Sources and Descriptive Statistics

This section summarizes the main empirical regularities documented in the data. This paper uses

the Survey of Consumer Finances (SCF) for the period 1998-2019 as its main data source. This

survey is conducted on a triennial basis and offers a rich classification of households asset and

12They allow for a probability of a negative tail event when investing in stocks to capture the exiting of stock
markets after retirement.

13Namely, a 50 dollar (2000 USD) per period fee.
14There are several arguments in this line, for example mental accounting, cognitive abilities or other behavioral

assumptions (e.g. Christelis et al., 2010), or even fully rational models where households optimal portfolio choice
depends on the cost of acquiring/processing information (e.g. Huang and Liu, 2007).
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liabilities, which allows to thoroughly classify assets according to their risk and liquidity.15

However, despite the advantages of survey data to explore households balance sheets, given the

cross-sectional nature of the SCF, this data is subject to several sources of endogeneity that must be

taken into account. First, households portfolio allocation is most likely influenced by the business

cycle.16 For example, households may want to liquidate assets to smooth consumption in busts.17

Second, when pooling data from different surveys to analyze portfolio allocation, the results are

subject to cohort effects, as noted by Fagereng et al. (2017). Third, this data structure misses

structural changes in variables relevant to households portfolio allocation by treating households

from different surveys equally. For instance, Favilukis (2013) argues that the higher participation

rates can be explained by a decreasing trend in the participation costs in equity markets. Therefore,

this section does not intend to provide causal evidence, but to characterize a set of stylized facts

to be covered in the quantitative model later.

Table 1 presents descriptive statistics for the main assets in households balance sheets.18 The

first panel presents total safe assets and the main categories broken by asset class. Likewise, the

second panel reports specific risky assets. Following Chang et al. (2018), we split several assets

(e.g. mutual funds) according to the risk of the underlying asset. For example, equity mutual

funds go to risky assets, bonds mutual funds to safe assets, and combinations of both are splitted

equally between asset types. The third panel reports total financial wealth according to my baseline

definition (See Appendix A). Finally, the fourth panel summarizes net house wealth in the sample.

2.2 Stylized Facts on Wealth Inequality and Portfolio Choice

As a first motivating fact, Gabaix et al. (2016) shows that wealth inequality has increased through

time. Thus, in Figure 1 we plot the evolution of two common measures of inequality (the top 1%

wealth share and the Gini index) for my baseline definition of financial wealth. The data shows

a steeply increasing trend over the sample period, with both measures consistently increasing

over time. Albeit not explicitly covered in the model, this figure remarks the importance of

understanding the drivers of wealth inequality and its dynamic.

Another well-known fact is that the distribution of financial wealth is extremely right skewed.

The blue line in Figure 1 supports that fact as the top 1% holds more than 45% of the total

15For details on the definition of households assets see Appendix A
16Though evidence from Brunnermeier and Nagel (2008) and Calvet et al. (2009) suggest that households are

rather unresponsive to changes in asset prices
17Nevertheless, evidence from Kaplan and Violante (2014) suggests that losses from imperfect consumption

smoothing are second order relative to gains from higher-return assets, especially in the presence of transaction
costs. See also Cochrane (1989); Browning and Crossley (2001).

18Also, Table B.1 in the Appendix B.1 presents descriptive statistics for demographic variables.
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Table 1: Descriptive Statistics of Households Assets

Mean Sd P10 Median P90 Part. Rate

Total Safe Assets (S) 112,502 754,336 94 12,838 217,628 0.93
Checking Account 6,423 58,129 0 1,338 11,200 0.84
Savings Accounts 14,809 164,161 0 94 24,617 0.55
Money Market Accounts 5,569 99,903 0 0 1,154 0.12
Cerificates of Deposits 6,874 73,597 0 0 1,817 0.11
Savings bond (safe) 8,001 272,823 0 0 426 0.14
Mutual Funds (safe) 11,185 285,924 0 0 0 0.05
IRA (safe) 17,161 106,690 0 0 22,713 0.19
Pensions (safe) 16,352 91,101 0 0 30,951 0.27

Total Risky Assets (R) 127,304 1,102,643 0 323 205,075 0.51
Brokerage 2,459 112,166 0 0 0 0.02
Stocks 40,557 767,154 0 0 12,315 0.17
Mutual Funds (risky) 26,906 398,752 0 0 3,941 0.11
Savings bond (risky) 1,773 113,179 0 0 0 0.01
IRA (risky) 24,041 143,754 0 0 37,500 0.22
Pensions (risky) 21,536 120,580 0 0 42,646 0.31

Baseline Financial Wealth (S + R) 239,806 1,620,250 105 21,238 437,007 0.94

Net House Wealth 171,922 766,263 0 45,222 367,000 0.68

Notes: Data from the SCF for the period 1998-2019. All variables expressed in 2010 USD and deflected using CPI
data from the World Bank’s World Development Indicators (https://data.worldbank.org/indicator/FP.CPI.
TOTL?locations=US). Baseline definition of financial wealth follows Chang et al. (2018). For the specific definition
see Appendix A.

financial wealth in 2019. Further, Figure 2 plots the distribution of financial wealth in the SCF

in 50 equal-sized bins. Note that over 40% of the households hold less than 10, 000 dollars, while

roughly a 10% has a financial wealth over 500, 000 dollars.

The strikingly uneven distribution of financial wealth may be due different savings rates or

different returns to savings. In the spirit of the growth literature, we refer to both types of accu-

mulation as perspiration and inspiration respectively. Namely, richer households may accumulate

more wealth because they save at higher rates (perspiration), or because they allocate resources

into higher-return assets (inspiration). Many empirical studies focus on the latter as an important

driver for wealth inequality (Piketty and Zucman, 2014; Bach et al., 2020; Fagereng et al., 2020;

Kuhn et al., 2020), we take this evidence as an input for my model as there is substantial differences

in households balance sheets that have been understudied in the quantitative literature.19

19Both recent improvements in access to reliable micro data in households balance sheets and the development
of computational methods to solve macroeconomic models with realistic microfoundatios are probably at the core
of the increasing interest in this channel.
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Figure 1: Evolution of Financial Wealth Inequality

0.84

0.85

0.86

0.87

0.88

W
ea

lt
h 

G
in

i I
nd

ex

0.30

0.35

0.40

0.45
T

op
 1

%
 W

ea
lt
h 

Sh
ar

e

2000 2005 2010 2015 2020

Top 1% Wealth Share
Wealth Gini Index

Notes: Data from the SCF for the period 1998-2019 in 2010 USD. Both indicators use Financial Wealth baseline
definition (see Appendix A).

To this end, note from Table 1 that participation rates are substantially higher in safe assets

and that the median household in absent in most of the asset markets.20 The lack of participation

of median-wealth households suggest the existence of heterogeneity in portfolio choices, sensitive

to wealth scale. To address this issue, and keeping notation from Table 1, define risky share as

ω =
R

R + S
(1)

Figure 3 plots households portfolio choices across my baseline definition of financial wealth.

Panel (A) presents risky shares and reports a steeply increasing share. Panel (B) presents par-

ticipation rates in risky assets (i.e. R > 0), which suggests that this heterogeneity is likely to be

produced along the extensive margin.

The fact that participation rates are substantially smaller that the ones predicted by standard

theoretical models makes room for theories incorporating different frictions on risky asset partici-

pation. For instance, households probably face large costs when monitoring risky asset investments

and are exposed to big losses due to delayed adjustment (Duffie and Sun, 1990; Lynch, 1996; Gabaix

20Also note that housing is the main household asset with a mean stock greater than the mean financial wealth.
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Figure 2: Financial Wealth Distribution in the SCF
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Notes: Data from the SCF for the period 1998-2019 in 2010 thousand USD. Financial Wealth Definition in Appendix
A. Figure B.1 in Appendix B.2 presents the distribution broken by asset class.

and Laibson, 2001).21 Similarly, many countries charge operational fees for buying/selling assets,

which may be relatively larger for poorer households. This paper builds on this motivation for the

quantitative model to be presented in the subsequent section.

Both participation rates and the risky share are relevant actors in households wealth accumu-

lation if average returns differ across asset classes. A simple back-of-the-envelope example allows

to illustrate this point. Consider as a proxy for returns on safe and risky assets the estimates

from Xavier (2020) on interest-earning assets and public equity respectively.22 Then taking this

returns as given, compute the average portfolio return for each percentile of the wealth distribu-

tion. Figure 4 shows an average return highly increasing in wealth. In fact, the only source of

heterogeneity in this calculation is given by heterogeneity in risky shares, and thus the slope may

be steeper if returns are increasing with wealth within asset classes, as recent empirical evidence

suggest (Fagereng et al., 2020; Xavier, 2020).

Regarding the definition of financial wealth, this paper excludes from its baseline definition two

very important assets in households balance sheets: private business and housing. On the one hand,

we abstract from private business, probably the asset class with the highest returns, as its nature

21For example, spending t hours monitoring investment at an hourly wage w, has a opportunity cost w × t.
22She estimates an annual return of 2.1% for the former and 6.7% for the latter.
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Figure 3: Portfolio Choices Across the Wealth Distribution
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Notes: Risky Share defined in Appendix A. Participation rate in the risky asset is defined as 1{R > 0} Each
connected point represents the average risky share/participation rate for households in each percentile. Wealth
distribution is computed using the baseline definition of financial wealth.

is somewhat different than most investment assets. For instance, households with private business

may participate in management decisions in the company or have private information related to

the performance of the business. This compromises the assumption of exogenous processes for

labor income and risky assets in the model below and would require to explicitly incorporate

occupational choice, which goes beyond the scope of this paper.23

On the other hand, dealing with housing in heterogeneous agent models is not straightforward

as it constitute both a durable consumption good and an investment asset. Laibson, Maxted and

Moll (2020), though on a different setting, build an heterogeneous agent model that explicitly

incorporate housing in the utility function, playing the double role described earlier. However,

despite the fact that this feature allows to build a more realistic environment, evidence from

Chang et al. (2018) and Fagereng et al. (2019) suggests that neither portfolio choice nor “saving by

holding” are exclusively driven by housing. Furthermore, using the baseline definition of financial

wealth, and incorporating net house wealth, housing looses its appeal to explain trends in wealth

inequality at the upper tail of the distribution. Namely, Figure 5 shows that the housing share

peaks somewhere around the median of the wealth distribution and then monotonically decreases.

On the contrary, other risky assets combined (stocks, risky bonds, mutual funds, annuities, trusts

and brokerage) steeply increase at the top of the distribution.

23However, this feature may be an important driver of wealth inequality at the very top. we consider this a
promising avenue for future research. For existing models in this fashion see Quadrini (2000); Cagetti and De Nardi
(2006)
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Figure 4: Simple Calculation of Return Heterogeneity
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Notes: Risky Share defined in Appendix A. Returns on assets follow annual rates computed by Xavier (2020).

2.3 Sensitivity Analysis

In this subsection we will present risky shares controlling for traditional suspects regarding house-

holds savings decisions. First, we will present descriptive evidence on risky shares for groups

commonly related to high/low participation in financial markets. Then we will estimate predicted

risky shares by using a simple regression model, controlling for classical determinants of portfolio

choice (education, income, age).

Figure 6 shows that average risky shares are somewhat similar across the wealth distribution

for both homeowners/renters, and college/no college households. The panel on the left shows that

despite very few renters at the top of the distribution, their risky share follows a similar trend

than the one of homeowners. Similarly, the panel of the right shows that there is no substantial

difference in portfolio choices for households with and without college degree. These results are

consistent with similar exercises conducted by Chang et al. (2018).

Now for the linear model, we follow Fagereng et al. (2019) and estimate

ωit = α +
100∑
p=2

δpDit,p + f(xit) + µt + εit, (2)
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Figure 5: Asset Shares Across the Wealth Distribution
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Notes: This figure considers the baseline definition of financial wealth plus housing and retirement account assets
for computing both shares and the percentiles of the wealth distribution.

where ωit is the risky share of household i, surveyed on the edition t, Dit,p a dummy variables for

the respective percentile p, µt a year dummy and f(xit) a vector of control variables that includes,

income, homeowner dummy, college dummy, marital status, number of children and a third-order

polynomial for age.24 After estimating Eq. (2), we compute ω̂it and then plot the mean predicted

risky share by percentile in Figure 7 shows that again, the increasing in wealth risky share is robust

to controlling by traditional drivers of portfolio choice.

Hence, there are overall three key stylized facts that will be covered in the next sections.

First, the fact that there is surprisingly small participation rate in risky assets. Second, that

both shares and participation rates are steeply increasing across the wealth distribution. Third,

the highly unequal distribution of financial wealth. This paper will intend to explain how wealth

accumulation is affected by households portfolio choices. In particular, to what extent introducing

frictions that replicate the first two facts contributes on explaining the third.

24Note that as mentioned, the SCF is not a panel and thus, this is only a cross-sectional model.
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Figure 6: Robustness in Portfolio Decisions
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Notes: Homeowners represent households with housing net worth different than 0. College refers to households
with a head with a college degree.

Figure 7: Predicted Risky Share
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Notes: This figure presents average predicted risky share by percentile. Predicted values of risky share ω are
computed from estimating Eq. (2). For coefficients on percentile dummies please refer to Figure B.3 in Appendix
B.2.
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3 An Heterogeneous Agent Model of Portfolio Choice

In this section we describe the quantitative model for the economy. The model features a partial

equilibrium model with safe and risky assets. Households face both a consumption-saving decision

and a portfolio choice, subject to non-convex adjustment costs. The framework is inspired in

traditional entry/exit models from firm dynamics literature (Hopenhayn, 1992).25 It also follows

closely the household problem in Kaplan et al. (2018). However, it differs from the latter in the

way financial frictions are introduced and in the sense that the two assets are not only different in

their adjustment cost, but also in the nature of the return process they follow.

Households. Time is continuous and there is no aggregate uncertainty. The economy is pop-

ulated by a unit mass of infinitely-living households that perceive a utility flow u over consumption

ct ≥ 0, where u satisfies INADA conditions. Preferences are time-separable and households dis-

count the future at a rate ρ ≥ 0. Utility is represented by a Constant Relative Risk Aversion

(CRRA) function

u(ct) =


c1−γt

1−γ , γ > 0

log(ct), γ = 1.
(3)

Markets are incomplete in the sense that households are unable to fully insure against shocks.

Households can hold two types of assets. (i) a safe asset b with exogenous return rate rbt (b), a

borrowing limit b > −∞ and a wedge between saving and borrowing $ > 0.26 (ii) a risky asset a

with stochastic return rat . The risky asset can only be held in non-negative amounts. Deposits or

withdrawals in the risky asset are subject to an adjustment cost κ > 0.27 This generates an inaction

region in households portfolio decisions. The cost can be interpreted directly as transaction fee

or indirectly as a monitoring cost, mental accounting, among other.28 Assume for now that the

return of the risky asset rat follows a general process of the form

drat = µ(rat )dt + σ(rat )dWt, (4)

where Wt is a standard Brownian motion.29 Labor income follows a two-state Markov process with

25Other similar applications of stopping time problems can be found in the international trade literature (Melitz,
2003), investment theory (Dixit, 1989), option pricing (Huang and Pang, 2003), among other.

26That is,

rbt (b) =

®
rbt , b > 0

rbt +$, b ∈ (b, 0).

Kaplan et al. (2018) refer to this wedge as a “soft borrowing constraint”.
27Note that this model features non-convex adjustment costs whilst Kaplan et al. (2018) uses a kinked, but

strictly convex, adjustment cost function.
28See e.g., Gabaix and Laibson (2001); Gomes and Michaelides (2005); Alvarez et al. (2012) among many other.

It is also straightforward to allow for a utility cost instead of a monetary cost of adjustment.
29A standard Brownian motion is a stochastic process that satisfies W (t+ ∆t)−W (t) = εt

√
∆t, εt ∼ N (0, t).
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income streams z1, z2, with z2 > z1. The income process jumps from state z1 to z2 with probability

λ1, and from z2 to z1 with probability λ2.30,31

Households differ on their safe wealth b, risky wealth a and the pair idiosyncratic shocks

(z, ra). At each instant in time t, the state of the economy is the joint distribution of income y

and wealth (a, b).

Households’ asset holdings evolve according to

dbt = (zt + rbtbt − ct) dt (5)

dat = drat at, (6)

Thus, from Eq. (4) and (6), risky wealth evolves according to32

dat = µ(rat )adt+ σ(rat )adWt (7)

Households’ value function is given by

υ(a, b, z) = max
{ct},τ

E0

∫ τ

0

e−ρ tu(ct) dt + e−ρ τ E0 υ
∗(aτ + bτ , z), (8)

where expectations are taken over realizations of the labor income and the return on wealth, and

υ∗(a+ b, z) = max
a′,b′

υ(a′, b′, z) s.t. a′ + b′ = a+ b− κ. (9)

From Eq. (8) note that households choose consumption paths, a stopping time τ and a re-balanced

portfolio upon adjustment in period t = τ . That is, households choose instantaneous consumption

flows at every period but keep their portfolio unchanged until idiosyncratic shocks push them out

of their inaction range. When that happens, households pay the adjustment cost κ and re-balance

their portfolio by solving Eq. (9).

30With this process we implicitly assume that the income process is independent from the return on the risky
asset. Even though in life-cycle settings the covariance term may be important to make households shift towards
safer assets as they age, in an infinite horizon setting its importance is of second order. Also, the empirical evidence
on the correlation between labor income and risky-asset returns is at least mixed. For instance, Cocco et al. (2005)
does not find a significant correlation using the U.S. Panel Study of Income Dynamics (PSID), while Fagereng et al.
(2017) finds similar results using administrative data for Norway.

31Even though it can be easily extended to a more general process (e.g. diffusion), this setting still has economic
interpretation: z1, z2 may represent unemployed and employed income streams respectively, with λ1, λ2 the job
creation and job destruction rates. Moreover, despite being very stylized, this process is able to reproduce key
moments from the income process. In particular, for the benchmark calibration presented below, we discretize
an Ornstein-Uhlenbeck (OU) process into a two-state Poisson process that matches the persistence and standard
deviation of innovations with traditional estimates in the literature.

32This follows directly from Ito’s Lemma.
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Altogether, households solve Eq. (8) subject to (5)-(6), the borrowing limit b, non-negative

constraint over consumption and the risky asset and the exogenous processes for z and ra. This

problem can be expressed recursively in terms of the following Hamilton Jacobi Bellman (HJB)

equation33

ρ υ(a, b, z) = max
c

u(c)

SafeAsset : + ∂bυ(a, b, z)(z + rbb− c)

Risky Asset : + µ(ra)a∂aυ(a, b, z) +
σ2(ra)a2

2
∂aaυ(a, b, z)

Labor Income : +
∑
z′∈Z

λz→z
′
(υ(a, b, z′)− υ(a, b, z))

(10)

with a constraint that

υ(a, b, z) ≥ υ∗(a+ b, z) ∀ a, b. (11)

The intuition behind Eq. (11) is straightforward. Due to the adjustment cost κ, households do not

re-balance their portfolio at every period, that is, υ(a, b, z) > υ∗(a + b, z). Whenever the value of

paying the adjustment cost and re-balancing the portfolio is infinitesimally higher that υ(a, b, z),

households adjust their portfolio. Hence, υ(a, b, z) = υ∗(a+b, z) acts as a trigger of the households

portfolio decisions.

Further, Eq. (10) is also subject to a state constraint boundary condition given by

∂bυ(a, b, z) ≥ u′(z + rbb), (12)

which is simply a combination of the borrowing constraint in the liquid asset b and the first order

condition in Eq. (10). Suppressing dependence of υ in (a, b, z), this problem can be written

compactly as34

min
{
ρυ −max

c
{u(c)− µ(ra)a ∂aυ −

σ2(ra)a2

2
∂aaυ − (z + rbb− c) ∂bυ

−
∑
z′∈Z

λz→z
′
(υ(z′)− υ(z)) , υ −Mυ

}
= 0,

(13)

where υ∗ =Mυ and M is known as the “intervention operator”. This equation is frequently used

in mathematics and is called Hamilton Jacobi Bellman Quasi-Variational Inequality (HJBQVI).35

33Hereafter we will use short-hand notation ∂xυ(x) = ∂υ(x)
∂x and ∂xxυ(x) = ∂2υ(x)

∂x2 .
34Appendix D.1 presents in detail the derivation of this equation.
35See Bensoussan and Lions (1982, 1984); Barles, Daher and Romano (1995); Bardi and Capuzzo-Dolcetta (2008)

and Øksendal (2003)
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In matrix notation, the discretized problem is given by

min
{
ρv− u(v)−A(v) v,v− v∗(v)

}
= 0 (14)

Stationary Distribution. The evolution of the joint distribution of wealth and income can

be described by the Kolmogorov Forward (KF) equation.36 Define g(a, b, z, t) ≥ 0 as the density

function corresponding to the joint distribution of the states in period t and sb(a, b, z) as the saving

policy function for the safe asset. Then without adjustment, the stationary density satisfies the

KF equation37

0 = −∂a(µ(ra)ag(a, b, z)) +
1

2
∂aa(σ

2(ra)a2g(a, b, z))− ∂b[sb(a, b, z) g(a, b, z)]

−
∑
z′ 6=z

λz→z
′
g(a, b, z) +

∑
z′ 6=z

λz
′→zg(a, b, z′).

(15)

The key advantage of this setting is that the differential operator in the KF equation is the adjoint

of the operator in the HJB equation (Achdou et al., 2017).38 Therefore, the discretized problem is

simply

0 = ATg (16)

However, Eq. (15) is unable to capture adjustment. To incorporate adjustment we need to reallo-

cate mass in the adjustment region to their optimal adjustment targets denoted (a∗, b∗). Luckily,

despite the fact that adding this extra terms mathematically is not straightforward, it can be easily

dealt with numerically.39

Finally, the stationary distribution g(a, b, z) must satisfy

1 =
∑
z∈Z

∫ ∞
b

∫ ∞
0

g(a, b, z) dadb (17)

36Also often referred as the Fokker-Planck equation.
37Achdou et al. (2017) presents a intuitive derivation of the KF equation, though in a simpler setting with one

asset and no stochastic returns.
38The adjoint operator is a generalization of a matrix transpose for infinite-dimensional operators. Formally,

defining the inner product of two functions v and p as

〈v, p〉 =

∫ ∞
0

v(x)p(x)dx,

the adjoint A∗ of an operator A is given by
〈Av, p〉 = 〈v,A∗p〉

Which is analog to the discrete time case where v · p =
∑N
i=1 vipi and Av · p = v ·ATp. For more detail see Nuño

and Moll (2018).
39For a theoretical reference see Bertucci (2020). See Appendix C for the numerical approach to deal with this

issue.
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Hence, the economy can be represented by a system of equations given by (17), the HJB and the

KF equations.

4 Baseline Quantitative Analysis

This section presents the main results from solving the model presented in the preceding section.

The model is calibrated at an annual frequency using a combination of externally and internally

calibrated parameters, targeting specific moments from the data.

4.1 Benchmark Calibration

Labor income. There are four parameters to calibrate for the income process: {z1, z2, λ1, λ2}.
These parameters are calibrated as follows. we assume discrete time log-income follows an AR(1)

process of the form

log(zt) = ϕz log(zt) + νt (18)

Following Guvenen, Kambourov, Kuruscu, Ocampo and Chen (2019) and Aiyagari (1994), we set

the autocorrelation ϕz = 0.9 and the standard deviation of innovations σν = 0.2. Then, we recover

the drift and the diffusion of the Ornstein-Uhlenbeck process (continuous time analog of the AR(1)

process)

d log(zt) = −θz log(zt) + σzdWt, (19)

where

ϕz = e−θz (20)

σz =
σ2
ν

2θz
(1− e−2θz) (21)

Average income is normalized to one and income states are −1,+1 standard deviations from the

mean. That is, z1 = 0.79 and z2 = 1.21. Finally, it can be shown that transition probabilities can

be obtained from

λz→z
′
=

[
θz

2πσ2
z (1− e−2θz)

]
exp

{[
− θz
σ2
z

(log(z′)− log(z)e−θz)2

1− e−2θz

]}
, (22)

which yields λ1 = λ2 = 0.25.

Assets. we use a rather standard calibration for the return on wealth. Namely, the process
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for the return of the safe and risky assets are calibrated following Gomes and Michaelides (2005).

In particular, the annual return of the safe asset rb is set to 2 percent whereas the drift and the

diffusion of the risky asset are constant and set to µ = 0.06 and σ = 0.18. That is, the average

excess of return is 4 percent annually.

The borrowing constraint b is set to 1 times the average annual income and the annual wedge

is set to $ = 0.06 as in Kaplan et al. (2018).

Adjustment cost. The non-convexity of the adjustment cost is arguably the most important

driver of portfolio choice and wealth inequality in the model. Nevertheless, given the lack of

evidence of transaction costs, there is no direct benchmark from the literature. Hence, I internally

calibrate this parameter to match the participation rate in the risky asset from the data.

This approach allows to incorporate the extensive margin of asset accumulation, a feature

absent in most of the wealth accumulation literature. As it will be shown below, traditional

workhorse models that try to replicate the shape of the wealth distribution often require high

participation rates, which is in stark contrast with the well-known lack of participation in risky

assets from micro data.

Preferences. Preference take standard values from the literature. The coefficient of relative

risk aversion parameter γ is set to 2. The discount rate is set to ρ = 0.053.

Table 2: Baseline Calibration

Parameter Description Value Source/Target

Households
γ Risk aversion 2 Standard
ρ Subjective discount rate 0.053 Standard (β = 0.95)

Assets
b Borrowing limit -1 1 times avg. income
$ Interest rate wedge 0.06 Kaplan et al. (2018)
rb Safe asset return 0.02 Gomes and Michaelides (2005)
µ Risky asset drift 0.06 Gomes and Michaelides (2005)
σ Risky asset volatility 0.18 Gomes and Michaelides (2005)
κ Adjustment cost 0.23 Participation Rate

Income Process
z1, z2 Income states 0.79, 1.21 σz = 0.21, ϕz = 0.9, E(z) = 1
λ1, λ2 Income jumps 0.25, 0.25 Eq. (22)
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4.2 The role of the adjustment cost κ

This subsection stresses out the importance of financial frictions in households portfolio decisions.40

The intention of introducing frictions in financial markets is to account for different features that

drive households portfolio decisions absent in workhorse models in the literature. In that sense,

the adjustment cost κ is a reduced form parameter that may represent either direct monetary fees,

opportunity costs of planning future investments or more subtle indirect costs like desutility of

acquiring financial skills, information processing costs, mental accounting and so on. Therefore,

it is reasonable that the inaction generated in the model is increasing in κ. Given that in order

to compute the stationary distribution, mass in the adjustment region must be relocated to the

adjustment targets (see Appendix C), we only can test this prediction by using households policy

functions. In particular, we compute households stopping time policy function τ ∗(a, b, z) and then

measure the size of the adjustment region out of the total state space.

Figure 8 shows the share the share of the adjustment region for different adjustment costs,

including the one used later in the baseline calibration for the model. Clearly, the figure shows that

inaction is increasing in the adjustment cost (i.e. adjustment share is decreasing in κ). In fact,

the calibrated model only needs a small adjustment cost to match participation rates seen in the

data (roughly 51%). Namely, κ represents an average cost of 0.75% of wealth stock for adjusting

households, which is in line with previous studies using transaction costs.41

Furthermore, the model allows to identify from which region of the state-space the adjustment

comes from. Namely, Figure 9 presents the adjustment region within the state-space of the econ-

omy. The red region denotes adjustment points while the blue region denotes inaction. Note that

there is a relatively large inaction range where poorer households (at the bottom left) and richer

households (at the top right) do not adjust their portfolio choice. These results are in line with

evidence documenting the importance of the extensive margin in portfolio choice (Chang et al.,

2018), as well as evidence in saving by holding at the top of the wealth distribution (Fagereng

et al., 2019; Kaplan and Violante, 2014).

40Unless otherwise noted, we will use the baseline calibration presented in the preceding subsection.
41For example, Kaplan and Violante (2014), in a liquid/illiquid two asset model reports a transaction cost of

0.9% of the stock of illiquid assets for adjusting households. Similarly, Alvarez et al. (2012) reports a 1% adjustment
cost on durable goods. Also, Individual Retirement Accounts (IRA) are usually subject to costs and penalties for
early withdrawals of 10%.
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Figure 8: Portfolio Inertia for Different Adjustment Costs

Notes: This figure reports the share of of the adjustment region out of the total state-space L for different adjustment
costs. Points in the adjustment region are defined by points where υ(a, b, z) = υ∗(a, b, z). Vertical line represents
baseline calibration for κ.

4.3 The Merton Model as a Useful Benchmark

How does the adjustment cost help understand stylized facts in households portfolio choice? As

noted in Section 2, participation rates seen in the data are substantially smaller than the ones

predicted in standard portfolio choice models and risky shares are highly increasing in wealth.

Given that the adjustment cost κ is calibrated to match portfolio decision along the extensive

margin (i.e. participation rate), this subsection intends to see to what extent the model is able to

replicate the fact that risky shares are highly increasing in wealth.

To do so, note that the model presented in Section 3 is a generalization of the traditional

infinite-horizon portfolio allocation model introduced by Merton (1969). In fact, the Merton model

can be recovered by assuming κ = 0 and no labor income (z1 = z2 = 0). In that case, and keeping

notation from Section 3, we have that optimal portfolio allocation (hereafter the “Merton rule”)

yields the following risky share

ωM =
µ− rb

σ2
r γ

, (23)
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Figure 9: Adjustment Region

Notes: The red region denotes adjustment points in the grid while the blue region represents the inaction region.
Figure on the left denotes low income (y1) and the figure in the right the high income (y2). Figure B.4 in Appendix
B.2 reports adjustment targets.

which is time-invariant and independent from wealth.42 The intuition is that as there is no other

source of uncertainty aside from the return of the risky asset, and no constraint in the risky asset,

households optimally allocate a constant share that depends only on the average excess of return,

the volatility of the investment and their personal preferences for risk.

Now if households face labor income uncertainty and frictions in saving and re-balancing their

portfolio, the risky asset share ωM is not necessarily optimal. For instance, a poor household

will need to pay a large (relative to its wealth) cost to enter the risky asset market, and thus,

their optimal share should lay below the Merton rule. Similarly, a household with a large initial

endowment of the risky asset, may have a share above the Merton rule. However, κ prevents that

households to adjust towards their optimal portfolio in a frictionless world. More subtly, excess

returns are small relative to the adjustment cost for poor households, and labor income risk is

more important for their portfolio decision. On the contrary, rich households perceive large flows

from saving relative to the adjustment cost, and are less concerned about labor income.

Consistently, Figure 10 presents risky shares across the wealth distribution and compares it to

the Merton rule, showing that the risky share predicted from the model is substantially different

at both ends of the distribution. Moreover, the model replicates the intuition presented above

regarding deviations from the Merton rule. In particular, households below percentile 30 do not

hold risky assets and thus, they are either hand-to-mouth or restricted to save only in low-return

assets. On the contrary, households at the top of the distribution hold a slightly riskier portfolio

than the optimal due to frictions in re-balancing their portfolio. In that sense, since the adjustment

cost is fixed, it is relatively smaller for richer households. Therefore, deviations from Merton rule

are substantially higher at the lower end of the distribution. Note also that in the model, over

42Appendix D.2 solves this model in detail.
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some threshold, say the median of the distribution, risky share is somewhat flat and above the

Merton rule.

One important remark of the model is that given discrete adjustments and the fact that all

the risky assets are collapsed into one single asset, the replication of risky shares from the data

is imperfect. While the data shows an almost linear risky share (though highly increasing), the

model predicts non-linear increases. A kinked, though strictly convex, adjustment cost function as

in Fagereng et al. (2019) or extending the model to a N asset environment may help to overcome

this issue.

Figure 10: Risky Share across Wealth Distribution

Notes: Each dot in this figure represents the average risky asset share ω for households within groups of 5%. The
horizontal line reports the “Merton rule” described in Eq. (23) as a benchmark.

4.4 Stationary Distribution of Wealth

This subsection presents stationary distribution as the solution of the KF equation introduced in

Section 3. Since the model cannot be solved analytically, we employ the already mentioned finite-

difference upwind scheme method from Achdou et al. (2017) to solve the model (See Appendix C).

One of the biggest advantages of this setting is that allows me to easily compute the stationary
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distribution of the economy once obtained the transition matrix A(v). Then with the stationary

distribution g(a, b, z), the marginal distribution of both assets in the economy are simply

ga(a) =
∑
z∈Z

∫ ∞
−∞

g(a, b, z) db (24)

gb(b) =
∑
z∈Z

∫ ∞
−∞

g(a, b, z) da (25)

Figure 11: Marginal Distribution of Assets in Steady State

Figure 11 plots the marginal distribution for both assets. This figure shows a highly unequal

distribution of wealth, specially regarding risky asset wealth. Note from the panel on the right that

the model replicates the participation rate and broadly the shape of the risky asset distribution

(see Figure B.1b). In particular, a great mass of individuals with zero or little risky wealth and a

large concentration of wealth from a small group of households.

The main channel through which households diverge on their wealth accumulation is by the

combination of ex-post realizations of idiosyncratic returns to savings (luck) and a scale dependent

effect generated by the adjustment cost κ. In the spirit of Gabaix et al. (2016), the scale dependent
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effect is produced as portfolio choice (and thus returns) are dependent on wealth. Intuitively,

low-wealth households are unable to afford the cost to enter risky asset markets. Further, these

households are more sensitive to labor income shock as it represents a higher share of their net

worth. Conversely, rich households have incentives to keep their risky assets as selling them

for larger consumption streams would require paying the adjustment cost. Also, as they are less

sensitive to labor income shocks, they prefer to hold large amounts of the high-return asset, despite

fluctuations on their labor income.

4.4.1 Two-asset Aiyagari model as a useful benchmark

To show to what extent the model presented in this paper contributes to the literature we take

as workhorse model the model of Aiyagari (1994) and include a portfolio allocation problem à

la Merton (1969).43 That is, heterogeneous households subject to idiosyncratic labor income risk

and incomplete markets choose consumption paths and their portfolio without adjustment frictions.

Assuming the same processes for labor income and stock returns, this model is simply the particular

case of κ = 0 in which all differences in accumulation are generated by different realizations of the

idiosyncratic shocks.

Despite not targeting explicitly any moment of the wealth distribution, the model provides a

reasonable fit of both top shares and the bottom-end of the distribution. Table 3 reports wealth

shares obtained with the baseline model and counterfactual shares obtained by assuming κ = 0,

under the calibration presented in Section 4.1. The results show that the model is capable of

providing a better fit throughout the entire wealth distribution. On the bottom end the share of

the bottom 50% is slightly smaller than in the data, though this can be improved by calibrating

the borrowing limit to match this moment.44 On the other end of the distribution, the top shares

predicted in the model (top 10%. 5% and 1%) are smaller, though substantially closer than the

two-asset Aiyagari model under the same calibration. In particular, the model is able to narrow

the gap between the benchmark model and the data in 54% for the top 10% share, 49% for the

top 5% share and 41% for the top 1% share.

Another advantage of the model presented in this paper is that it takes into account a well-

known fact in the household finance literature absent in most models of wealth accumulation: the

surprisingly small participation in risky assets. For instance, the Aiyagari model with portfolio

choice and no adjustment frictions is able to match top shares of the wealth distribution under

43Achdou et al. (2017) term this model as “Aiyagari Model with Fat-tailed Wealth Distribution”. We will use this
name to refer to this benchmark hereafter. For more detail see their online appendix in https://benjaminmoll.

com/papers/.
44Table B.2 jointly calibrates the adjustment cost and the borrowng limit to match participation rate and the

bottom 50%. The results are overall very similar, though with a bottom 50% closer to the data estimates.
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specific calibration, however it assumes a participation rate substantially greater than the one seen

in the data.45 On the contrary, my model explicitly targets participation share when calibrating

the adjustment cost.

Table 3: Wealth Inequality

Measure Data
Baseline
Model

Fat-tail
Aiyagari
(1994)

Top 1% 37.5 22.2 11.5
Top 5% 64.6 49.6 35.2
Top 10% 77.8 66.1 52.6
Middle 40% 19.5 33.8 38.3
Bottom 50% 0.98 0.10 9.2

Notes: Estimates of Wealth inequality consider baseline Financial Wealth
definition and calibration from Section 4.1.

4.4.2 The amplifying effect of adjustment costs in wealth inequality

Given the stopping time element generated by the adjustment cost, small structural changes in the

parameters may have substantial effects on the long run wealth distribution. For example, small

changes in the income process may increase (reduce) precautionary savings and the adjustment

cost may amplify (dampen) the effect in wealth inequality. To illustrate this intuition, consider

a permanent increase in labor income risk. Due to precautionary motives, higher wage risk will

enhance savings, specially from the poor and less-insured households, increasing wealth accumula-

tion at the bottom and thus participation rates, returns to savings and so on. Hence, higher wage

risk should reduce top shares, and this effect is likely to be amplified by κ.46 It is easy to see that

the same intuition also holds in the other direction. A decrease in labor income risk will induce

higher consumption paths, however rich households, more exposed to the adjustment cost and less

sensitive to labor income, will be more reluctant to increase consumption, given that it requires

them to pay κ for the withdrawal. This will generate inertia at the top of the distribution.

To test this hypothesis, we take the baseline model, assume a permanent reduction in the

standard deviation of log-income innovations of 10% (σν = 0.18) and discretize again the income

45Achdou et al. (2017) show that under reasonable assumptions on the risky asset process, the stationary wealth
distribution follows an asymptotic power law, where 1−G(a) ∼ ma−ζ with tail exponent

ζ = γ

Ç
2σ2(ρ− rb)
(µ− rb)2

− 1

å
,

which calibrated to U.S. data (ζ ≈ 1.5) provides a good fit for the wealth distribution, though predicts almost a
complete participation in risky assets.

46Hubmer et al. (2020) provides a similar intuition to argue the decreasing effect of wage risk in wealth inequality.
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process into a two-state Poisson process as in Subsection 4.1. Then we do the same for the

counterfactual case in which there is no adjustment cost (i.e. κ = 0) and solve both models

computing top wealth shares from the resulting stationary distributions. Table 4 reports the

results of this exercise. Comparing percentage changes in top shares on both models, it is clear

that the amplifying effect of κ is large, with an overall effect on top shares roughly 9-10 times

greater than the counterfactual model. Moreover, the effect is quantitatively large by itself. Small

changes to the underlying parameters are able to generate a highly unequal wealth distribution

through this channel. In particular, this arguably small change to the income process allowed to

get substantially closer to the top shares seen in the data (see Table 3).

Table 4: The amplifying effect of adjustment costs top shares

Baseline Fat-tail Aiyagari (1994)
σν = 0.20 σν = 0.18 % change σν = 0.20 σν = 0.18 % change

Top 1% 22.2 33.9 52.70 11.5 12.2 6.09
Top 5% 49.6 64.1 29.23 35.2 36.6 3.98
Top 10% 66.1 80.1 21.18 52.6 53.6 1.90

Notes: Estimates of Wealth inequality consider baseline Financial Wealth definition. Panel on
the left denotes baseline model presented in Section 3. Panel on the right reports results using
counterfactual model with κ = 0. Calibration remains unchanged from Subsection 4.1 except for
the decrease in wage risk in columns 2 and 4 (σν = 0.18).

4.4.3 Decomposing top shares

Intuitively, in the benchmark with no adjustment costs (i.e. κ = 0), all differences in wealth

accumulation are given by ex-post realization of the idiosyncratic shocks (luck), either in the

return to savings or in labor income. On the other hand, my baseline model incorporates a

scale dependent component that deepens wealth inequality. Namely, richer households hold riskier

portfolios and exploit positive excess returns. However, both effects are not additively separable.

The luck component in the return to savings depends on the participation decision and thus on

the scale component generated by κ.

One way to overcome this issue is to again use the structural change to the income process

introduced in Subsection 4.4.2, but now re-calibrate κ to match the participation rate given the

new income process. This allows me to isolate the luck component of wealth shares and with

that decompose, in the lens of the model, top wealth inequality into luck and scale dependence.

Namely, the difference between top shares with and without adjusting κ is the scale component

of top shares. This is due to the fact that when adjusting the adjustment cost to match the

participation rate given the new income process, we are matching the scale component of wealth

accumulation with the one before the shock. Denoting the new adjustment cost κ = κ′, Figure 12
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shows how the change in wealth accumulation at the top can be decomposed into the scale and

luck component.

Figure 12: Top Share Decomposition

∆ Top Shares

(∆Top shares |κ = κ′)

luck scale

Table 5 presents results of this decomposition. The first three columns are identical to the ones

in Table 4, while the last two columns report the result from decomposing top shares change. The

results show that the scale component of wealth accumulation accounts for over 88% of the change

in top shares predicted by the model. Because in the baseline model households below certain

wealth threshold do not participate in risky asset markets, returns to savings at both ends of the

distribution differ substantially. Furthermore, as argued earlier, the effect of structural changes

to the parameters is amplified by the adjustment cost which fuels top share inequality, and thus

explains why the scale component is the main driver of wealth inequality in the model.

Table 5: Top Wealth Decomposition

σν = 0.20 σν = 0.18 % change % scale % luck

Top 1% 22.2 33.9 52.7 88.0 12.0
Top 5% 49.6 64.1 29.2 88.3 11.7
Top 10% 66.1 80.1 21.2 89.3 10.7

Notes: Estimates of Wealth inequality consider baseline Financial Wealth
definition and calibration from Section 4.1. The decomposition of top change
is computed by comparing the percentage change in column 3 with the change
one re-calibrating the adjustment cost to match participation rate.

5 Discussion and Extensions

This section will explores relevant extensions to the baseline model that may be useful to reconcile

with other facts from micro data, address other common sources of wealth inequality, or even

policy implications. For instance, the model can be easily extended to incorporate richer return

heterogeneity, decreasing relative risk aversion, tax progressivity or incorporate quasi-hyperbolic

discounting. We will briefly discuss the first two extensions.
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5.1 Richer Return Heterogeneity

The baseline model assumes that the return on savings differs only on the ex-post realization of

shocks and the portfolio composition. However, it assumes an ex-ante identical process for ra

across households. Nonetheless, there is recent empirical evidence suggesting sizable differences in

returns even within narrow asset classes (Fagereng et al., 2020; Xavier, 2020).47 Therefore, one

natural step would be to incorporate type dependence into the model. That is, allow both the

excess return and the volatility depend on observable characteristics of households (e.g. wealth).

Xavier (2020) takes this approach, though in a one asset setting, by matching average returns from

survey data across the wealth distribution.

Beyond empirical evidence, it is reasonable to expect at least different volatility of returns

from a portfolio diversification standpoint. In fact, since the model collapses all risky assets into

a one single asset, the baseline process for ra abstracts from imperfect diversification derived

from financial frictions. Consider an economy with multiple risky assets, where each transaction

requires paying the adjustment cost κ. Intuitively, the adjustment cost prevents households with

little wealth to diversify their portfolio when entering the risky asset markets. Households must

pay the adjustment cost for buying a first risky asset, and hence there is no portfolio diversification.

When households start accumulating assets, they are able to hold other risky assets and diversify

their investment, eventually getting to the mean-variance frontier when wealth is sufficiently high.

Concretely, the model can be easily extended to incorporate richer return heterogeneity and

type dependence by assuming a more general process for the return rat given by

drat = µ(a)dt+ σ(a)dWt, (26)

and a very similar solution method, with the exception that now there are additional “free” pa-

rameters to calibrate under the functional form of µ(a) and σ(a).

As an example of this extension, consider the more intuitive case of imperfect portfolio di-

versification and constant drift (i.e. µ(a) = µ). Assume also that the volatility of the risky asset

decreases exponentially with risky wealth a at a rate ϑ

σ(a) = σ̂e−ϑa (27)

Note that there are now two parameters to calibrate (σ̂, ϑ) besided κ. We calibrate the first in

order to match the average standard deviation of the risky asset (σ̄) with the standard deviation

47Gabaix et al. (2016) terms this feature as type dependence
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on the baseline model (σ = 0.18).48 The second is calibrated to match the top 10% wealth

share. To calibrate the three parameters, We choose the set of parameters Θ̂ that minimizes

the weighted deviation between resulting moments m(Θ) from the model (computed using the

stationary distribution) and the respective targets. That is

Q(Θ) = (m− m̂(Θ))′W(m− m̂(Θ)) (28)

Θ̂ = arg min
Θ
Q(Θ), (29)

where W is the weight matrix, for which we simply assume the identity matrix.

The result of solving Eqs. (29) is presented in Table 6, while Table 7 presents the predicted

shares of the wealth distribution. Note that despite doing a better job at matching most of the

distribution, this approach has problems matching wealth shares at the very top (top 1%). The

intuition of this result is that the model “needs” volatility to get some households to draw apart

from the rest.

Table 6: Internally calibrated parameters

Parameter Value Target Model

Fixed adjustment cost (κ) 0.19 51.2a 49.7
Exponential decay rate (ϑ) 0.01 77.8b 74.7
Scale parameter volatility (σ̂) 0.22 0.18c 0.21d

a Risky asset participation rate.
b Top 10% wealth share.
c Gomes and Michaelides (2005).

Table 7: Top wealth shares under imperfect diversification

Measure Data
Baseline
Model

Imperfect
Diversification

Top 1% 37.5 22.2 19.2
Top 5% 64.6 49.6 54.2
Top 10% 77.8 66.1 74.7
Middle 40% 19.5 33.8 26.8
Bottom 50% 0.98 0.10 -0.2

Notes: Imperfect diversification refers to the case where the risky asset difus-
sion follows Eq. (27)

48To do so, we use the marginal distribution ga(a) computed in Eq. (24).
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5.2 Decreasing Relative Risk Aversion

A very common argument when trying to explain the increasing risky share across the wealth

distribution is differences in risk aversion. In particular, that relative risk aversion (RRA) is a

decreasing function of wealth. Or perhaps more intuitively, that richer households can “afford to

take a risk”. In that sense, there are two possible ways to generate RRA decreasing in wealth. First,

one can exogenously assume preference heterogeneity, for example by assuming a CRRA utility

function where γ changes across individuals. The second option is to assume that preferences are

represented by a utility function with decreasing RRA.49

Regarding the latter, the Stone-Geary utility function slightly changes the typical CRRA

function by assuming a subsistence level of consumption c̄ > 0. That is

u(ct) =
(ct − c̄)1−γ

1− γ
, (30)

where the RRA parameter Γ(ct) is given by

Γ(ct) = −u
′′(ct)ct
u′(ct)

=
γct
ct − c̄

(31)

It is easy to see that Γ′(ct) < 0, i.e. that the relative risk aversion is decreasing in wealth. Note

also that when c̄ = 0 we recover the case with constant relative risk aversion.

Both approaches presented above have caveats that are worth mentioned. On the one hand,

assuming preference heterogeneity is difficult since we usually do not observe preferences. On the

other hand, Stone-Geary utility functions require a positive subsistence level of consumption which

is rather uncommon in the literature and also challenging to measure.

Either way, the effect of relative risk aversion decreasing depends basically on two opposing

forces. As noted by Gomes and Michaelides (2005), more risk averse households (in this case

households at the bottom of the distribution) will be less willing to invest in risky assets. However,

greater risk aversion increases saving and thus accumulation at the bottom. Further, as previously

noted, this greater accumulation also increases participation in risky assets, amplifying the effect.

The net effect in wealth shares will then depend on which force dominates.

For illustrative purposes, we will solve again the model both using a Stone-Geary utility

function and incorporating preference heterogeneity separately. For the former we will now follow

Achury, Hubar and Koulovatianos (2012) and assume a monthly subsistence level of consumption of

240 US dollars of year 2010 and an average household size of 2.5. That gives an annual subsistence

49For a discussion in this matter see Mas-Colell, Whinston, Green et al. (1995) pages 192-193.
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level of 7,200 dollars. Rounding up average income to 64,000 dollars (See Table B.1), we set

c̄ = 11.25% (7200/64,000) given that average income is normalized to one. For the later, we

assume the simplest case where low income households (which can be interpreted as unemployed)

are more risk averse than high income households. For simplicity we set arbitrarily both values to

be γ1 = 1.5 and γ2 = 2.5.

Results are presented in Table 8 shows that overall the results remain unchanged under both

ways of introducing decreasing relative risk aversion. The reason of this result is probably related to

a similar magnitude between the two opposing forces described earlier. However, both approaches

and their calibration where very stylized and do not intend to provide a final answer on the

importance of this channel for wealth inequality.

Table 8: Top wealth shares under decreasing relative risk aversion

Measure Data
Baseline
Model

Pref.
Heterogeneity

Stone-Geary

Top 1% 37.5 22.2 23.0 20.3
Top 5% 64.6 49.6 49.4 47.3
Top 10% 77.8 66.1 65.7 63.8
Middle 40% 19.5 33.8 33.9 34.7
Bottom 50% 0.98 0.10 0.5 1.5

Notes: Preference heterogeneity denotes the case where preferences are represented by a
CRRA utility, with a parameter γ dependent on the income profile z. Model with Stone-Geary
utility function incorporates a subsistence level c̄ as in Eq. (30).

6 Concluding Remarks

For years it has been an open question what drives wealth inequality and the right-skewed shape

of the wealth distribution. However, only recently there have been serious attempts to incorpo-

rate richer heterogeneity in households balance sheets, though usually abstracting from key facts

documented in the portfolio choice literature. For instance, several papers have tried to match

the top shares of the wealth distribution abstracting from households portfolio choices or frictions

in financial markets. This rules out two key stylized facts in households balance sheets: (i) the

surprisingly small participation rates in risky assets and (ii) the steeply increasing risky asset share.

To this end, this paper intended to provide a connection between portfolio choice and wealth

inequality by introducing a second (risky) asset and frictions in its adjustment into an otherwise

standard wealth accumulation model (e.g. Aiyagari, 1994). Therefore, we first presented well-

known facts in the portfolio choice literature and the wealth distribution from the survey data.
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With that key moments we calibrated the model to match micro estimates and compute the

stationary distribution.

Once computed the stationary distribution, we compared the wealth shares predicted by the

model and the ones predicted in the benchmark case with no adjustment cost with estimates from

the data, showing that under the same calibration, the model is able to explain roughly half of the

gap in top wealth shares from the benchmark model, without explicitly targeting any parameter

of the distribution. Moreover, we showed that the introduction of the adjustment costs amplifies

wealth inequality through a scale dependent effect on the return to savings which is explains most

of changes to the shares at the top.

Finally, we proposed some interesting extensions to the baseline model that may be able to

tackle recent empirical evidence on return heterogeneity within asset classes, incorporate imperfect

portfolio diversification, or even explore the role of relative risk aversion across the wealth distri-

bution. However, both the baseline model and the extensions abstracted from general equilibrium

implications by assuming exogenous processes for the labor income and the assets returns. Also,

there is no attempt to microfound the adjustment cost. We consider these issues fruitful areas for

future research
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Appendix A: Data Generation and Definitions

A.1 Survey of Consumer Finances

Households balance sheet data is collected over 8 editions of the Survey of Consumer Finances

(SCF) for the period between 1998-2019 (both included). The SCF is a cross-sectional survey

of U.S. households conducted on a triennial basis. The survey provides detailed information in

households assets, income and demographic characteristics. Roughly 6,500 households are ran-

domly selected on each survey, with the intention to represent families from all economic strata.

The selection of households is designed by using a multistage area-probability design and tax data.

The latter source is designed to disproportionately select households relatively wealthy, and usually

underrepresented in survey data.

For the construction of the variables, we follow closely the definition of Chang et al. (2018).50

The variables generally remain across surveys but changes to the variables within asssets will be

mentioned when relevant.

Checking Accounts, Money Market Accounts: The variables X3506, X3510, X3514,

X3518, X3522, X3526 report the amount of money in (up to) six different accounts. The respondent

answers in variables X3507, X3511, X3515, X3519, X3523, X3527 whether this account corresponds

to a checking account or a money market account.

Savings Account: Savings accounts are defined as the sum of the variables X3804, X3807,

X3810, X3813, X3816 for the surveys 1998 and 2001 and X3730, X3736, X3742, X3748, X3754,

X3760 from the survey of 2004 onwards.

Certificates of Deposit: The variable X3721 provides the money amount the respondent

50Also, the replication materials on this paper made easier the processing of surveys in the period 1998-2007.
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has in certificates of deposit. Only certificates of deposit that belong to someone related to the

household are considered (X7620 < 4).

Saving Bonds: Two categories are defined for bonds. Safe bonds consider the sum of

variables X3902 (money in U.S. government saving bonds), X3908 (face value of government bonds)

and X3910 (money in state and municipal bonds). Risky bonds consider variables X3906 (face value

of mortgage backed bonds), X7634 (face value of corporate bonds) and X7633 (face value of foreign

bonds).

Life Insurance: Variable X4006 gives the money value of life insurance policies while vari-

able X4010 the amount currently borrowed using these policies. We define life insurance as the

maximum between X4006 - X4010 and zero.

Miscellaneous Assets: Amount of money owed by friends, relatives or others, money in

gold or jewelry and others. Variables X4018, X4022 and X4030 represent money owed to the

respondent and X4032 money owed by the respondent. Miscellaneous assets is defined as the

difference between the former three and the last variable X4032.

Brokerage Accounts: X3930 gives the dollar value of all the cash or call money accounts at

a stock brokerage and X3932 the current balance of margin loans at a stock brokerage. Brokerage

account is defined as the former minus the latter variable.

Mutual Funds: Variables X3822, X3824, X3826, X3828, X3830 provide the total market

value of mutual funds grouped by stocks, tax-free bonds, government-backed bonds, other bonds,

and combination funds respectively. Safe mutual funds are defined as X3824 +X3826 +X3828 +

0.5×X3830 while risky mutual funds consist of X3822 + 0.5×X3830

Publicly Traded Stocks: The variable X3915 gives the market value of US stocks owned

by the respondent, and variable X7641 the market value of stocks of companies outside the US.

Stocks is defined as the sum of both variables.

Annuities: The variable X6820 gives the dollar value of annuities for the 1998 and 2001

surveys and X6577 afterwords. Only risky (Stocks, mutual funds or real state) are defined risky

annuities, only safe (bonds/interest, CDS/money market) are defined safe annuities, and mixed

annuities money is allocated in equal parts on each type (risky/safe).

Trust: Variable X6835 (years 1998-2001) and X6587 (years 2004-2019) provide the money

amount of assets in a trust. Allocation between risky and safe trusts follow the same criteria as in

annuities.

Individual Retirement Accounts (IRA): For the surveys 1998-2001, variables X3610,
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X3620 and X3630 report the total money in individual retirement accounts. Variable X3631

reports the detail of the investment. Following Chang et al. (2018), money markets, bonds and

universal life policy are considered safe, while stocks, real estate, limited partnership investments

and brokerage accounts are considered risky. We allocate 2/3 into the safe account when X3631

= 4 (combination of money market, bonds and stocks) and the rest to the risky asset. Similarly,

other combinations are divided equally between safe and risky assets.

For the remaining surveys, X6551, X6552, X6553, X6554, X6559, X6560, X6561, X6562,

X6567, X6568, X6569 and X6570 report money in individual retirement accounts. Variables X6555,

X6563 and X6571 report asset categories. Split accounts accounts are divided equally, interest

earning assets are considered safe and stocks, real estate and hedge funds are considered risky.

Pensions: Variables X4226, X4326, X4426, X4826, X4926 and X5026 provide the total

amount of money in pension accounts. We subtract possible loans against these accounts by

using the variables: X4229, X4329, X4429, X4829, X4929 and X5029. Categories Savings, 401k,

defined contribution plan, money purchase plan, tax-deferred annuity, other type of annuity and

other are divided equally between safe and risky pensions. Other pension benefits reported in vari-

ables X5604, X5612, X5620, X5628, X5636 and X5644 are also equally distributed across assets.

In the 2001 survey variables X5604, X5612, X5620, X5628, X5636 and X5644 are allocated using

detail on variables X6491, X6492, X6493, X6494, X6495 and X6496. Interest earning assets are

considered safe, stocks, real estate and insurance risky, and split or other are equally distributed.

For the surveys 2004-2019, pensions are stored in variables X11232, X11532 (only 2004-2007),

X11032, X11132, X11332, X11432. Future pension benefits are reported as in the other surveys

(variables X5604, X5612, X5620, X5628, X5636 and X5644), with the exception that 2004-2007

surveys exclude X5636 and X5644. Allocation by asset detail is equal to previous editions of the

survey.

Housing: Variables X513 and X526 gives the value of the land and buildings the respondent

(partially) owns. Variables X604 and X614 are the value of the site and the mobile home the

respondent owns respectively. Variable X623 is the total value of the home and site if he/she

owns both. Variable X716 is the current value of the home/apartment/property the respondent

(partially) owns. Variables X1706, X1806 and X1906 (surveys 1998-2016) give the total value of

other properties such as real estate investment or vacation houses. Variable X2002 denotes the

value of recreational properties and X2012 the remaining value of other properties.

Variables X1409, X1509 and X1619 (until SCF 2010), X1609 (until SCF 2007), X1310, X1328

and X1339 (2013 onwards) provide value of Land contract lending from the respondent. Similarly,

variables X1417, X1517 and X1621 (until SCF 2010), X1617 (until SCF 2007), X1318, X1337 and
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X1324 (2013 onwards) report value of land contract lending to the respondent.

Variables X805, X905 and X1005 give the value of mortgage debt from the respondent, X1108,

X1119, X1130, X1136 provide value of lines of credit and X1044 other loans. Finally, housing net

worth is defined as the sum of the value of the properties and land contract lending, minus all

mortgage debt, lines of credit, land contract borrowing and other loans held by the respondent.

With the previous definitions, we group assets into the following categories:

Safe Assets = Checking Accounts + Money Market Accounts + Savings Accounts

+ Certificates of Deposit + Safe Saving Bonds + Life Insurance + Safe Trusts

+ Miscellaneous Assets + Safe Mutual Funds + Safe Annuities + Safe IRA

+ Safe Pensions

Risky Assets = Risky Saving Bonds + Brokerage Accounts + Stocks + Risky Mutual Funds

+ Risky Annuities + Risky Trusts + Risky IRA + Risky Pensions

And the baseline definition

ω =
Risky Assets

Risky Assets + Safe Assets

The baseline definition of Financial Wealth used throughout the text is simply

FW = Risky Assets + Safe Assets = R + S (A.1)

Finally, alternative definitions may include housing (net of mortgage debt).
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Appendix B: Additional Tables and Figures

B.1 Additional Tables

Table B.1: Demographic Descriptive Statistics from the SCF

Mean Sd Min Max

Income 63,975 149,140 0 99,320,000
Age 50.37 17.32 17 95
Children 1.44 1.78 0 10
1{College Degree} 0.39 0.49 0 1
1{Married} 0.50 0.50 0 1

Notes: Data from the SCF for the period 1998-2019 in 2010 US$.
Age and children report the respondent age and number of children.
1{CollegeDegree} and 1{Married} report whether the respondent
has a college degree and if he/she is currently married.)

Table B.2: Wealth Inequality

Measure Data
Baseline
Model

Targeting
bottom 50%

Top 1% 37.5 22.2 22.1
Top 5% 64.6 49.6 49.3
Top 10% 77.8 66.1 65.7
Middle 40% 19.5 33.8 33.6
Bottom 50% 0.98 0.10 0.7

Notes: Estimates of Wealth inequality consider baseline Financial Wealth
definition and calibration from Section 4.1. The first column reports esti-
mates from the data. The second column shows predicted wealth shares
from the baseline model. The third column uses the borrowing limit to
target the bottom 50% as in Xavier (2020).
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B.2 Additional Figures

Figure B.1: Financial Wealth Distribution by Asset Class
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Notes: Data from the SCF for the period 1998-2019 in 2010 thousand USD. Risky/Safe Wealth Definition in
Appendix A. Weights in this figure where rounded to the nearest integer.

Figure B.2: Portfolio Choice under Different Definitions of Financial Wealth
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(a) Risky Asset Share
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Notes: Risky Share defined in Appendix A. Participation rate in the risky asset is defined as 1{R > 0} Each
connected point represents the average risky share/participation rate for households in each percentile. Wealth
distribution is computed using the baseline definition of financial wealth (blue), the baseline definition excluding
retirement accounts (red) and the baseline definition including housing net worth (green).
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Figure B.3: Coefficients on Percentile Dummies for Risky Share Regression
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Notes: This figure presents coefficients δp from estimating ωit = α+
∑100
p=2 δpDit,p+f(xit)+µt+εit. Circles denote

point estimates and lines the respective 95% confidence interval.

Figure B.4: Adjustment Targets

Notes: Adjustment targets represent optimal demand for the safe asset b′ (first row) and the risky asset a′ (second
column) for both income profiles, conditional on adjustment.
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Figure B.5: Risky Asset Marginal Distribution in Steady State
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Figure B.6: Safe Asset Marginal Distribution in Steady State

Appendix C: Numerical Strategy

C.1 Solving the HJB Equation

Following closely the finite difference method proposed in Achdou et al. (2017) and building upon

Benjamin Moll’s public access codes51, define the equispaced grids i = 1, . . . , I, j = 1, . . . , J , and

z = 1, . . . , Z for the safe asset, risky asset and labor income respectively. Then define v = vi,j,z as

the discretized value function. Now define

Backward difference: ∂x,B v =
vk − vk−1

∆x
(C.1)

Forward difference: ∂x,F v =
vk+1 − vk

∆x
(C.2)

Central difference: ∂xx v =
vk+1 − 2vk + vk−1

(∆x)2 , (C.3)

51https://benjaminmoll.com/codes/.
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as the forward, backward and central derivative approximations for x = (a, b), k = (i, j), and

with ∆x as the distance between grid points. The idea is then to use backward approximations

whenever the drifts of a and b are negative and forward approximations whenever they are positive.

The central approximation is used for ∂aav. Now, the discretized-version of the household problem

can be written as follows

min
{
ρv− u(v)−A(v) v,v− v∗(v)

}
= 0, (C.4)

where v and u(v) are the discrete-time value and utility functions over the stacked state space

L ≡ I × J × Z and A(v) is a L × L squared matrix that captures the evolution of the state

variables. The algorithm for the solution is the following:52

1. As initial guess v0, use the solution of the no-adjustment case:

ρv− u(v)−A(v) v = 0, (C.5)

i.e. solve the problem when κ is infinite. Note that as the problem is non-linear in v, some

iteration will be necessary. The guess for this step will be “staying put”

υ0 =
(y + rb b)1−γ

ρ(1− γ)
(C.6)

Then, from the FOC w.r.t to c, one can compute

c = (∂bυ0)−
1
γ (C.7)

for both the backward and forward approximations. Then, it is straightforward to compute

backward and forward saving policy functions sh = shi,j,z, for h ∈ {B,F}. Compute con-

sumption and savings using the upwind scheme. That is, choose backward approximation

whenever the drift of b is negative and forward when it is positive.

As risky wealth and labor income evolve exogenously, one can compute directly the evolution

of these states using the upwind method. Finally, compute the transition matrix A(υ) and

solve (C.5). Iterate until convergence.

2. Given vn, find vn+1 by solving:

min

{
vn+1 − vn

∆
+ ρvn+1 − u(vn)−A(vn) vn+1, vn+1 − v∗(vn)

}
= 0 (C.8)

52This algorithm is exactly as in https://benjaminmoll.com/wp-content/uploads/2020/06/liquid_

illiquid_numerical.pdf but with the exception that now the process for the return of the risky asset is stochastic,
and thus risky wealth evolves slightly differently.
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This step follows Huang and Pang (2003) and its exercise for American options with trans-

action costs (see section 2.3 on their paper). Eq. (C.4) can be expressed as(
v− v∗(v)

)T(
ρv− u(v)−A(v) v

)
= 0 (C.9)

v ≥ v∗(v) (C.10)

ρv− u(v)−A(v)v ≥ 0 (C.11)

Now denote z = v − v∗(v) and B = ρI −A(v). Then Eq. (C.10) is simply z ≥ 0 and Eq.

(C.11) is

Bz + q ≥ 0, (C.12)

where q = Bv∗(v) − u(v). Hence, the problem can now be written in a standard linear

complementarity problem (LCP) form

zT (Bz + q) = 0 (C.13)

z ≥ 0 (C.14)

Bz + q ≥ 0, (C.15)

which can be easily dealt with LCP solvers.53

3. Iterate until convergence.

C.2 Solving the KF Equation

To ease notation, define the discretized variables as x ≡ xi,j,z. Then the discretized-version of Eq.

(15), i.e. the evolution of the joint distribution of states without adjustment, can be written as

follows

0 = − d

da
(µag) +

d2

da2

(σ2a2

2
g
)
− d

db
(sbg)− λk g + λ−k g, (C.16)

or in matrix notation

0 = ATg, (C.17)

where AT is the transpose of the transition matrix computed in the households problem (i.e. when

solving the HJB equation).

In order to deal with adjustment we need to introduce some additional notation. Define

(a∗k, b
∗
k) as the optimal adjustment targets, conditional on adjustment. Then denote ` = 1, . . . , L

53For solving the model we use the following Newton-based LCP solver in Matlab: https://www.mathworks.

com/matlabcentral/fileexchange/20952-lcp-mcp-solver-newton-based.
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as the stacked state space and the grid point k∗(`) reached from point ` upon adjustment. Finally,

define the inaction region I as the set of grid points where υ > υ∗(υ).

To introduce adjustment, we need to incorporate a discretization of the“intervention operator”

defined in Section 3. To this end, define the binary matrix M with elements M`,k, for ` = 1, . . . , L

and k = 1, . . . , L, given by

M`,k =


1, if ` ∈ I and ` = k

1, if ` /∈ I and k∗(`) = k

0, otherwise

(C.18)

This matrix moves mass from the adjustment region to their corresponding adjustment targets.

Intuitively it is easy to see that when ` ∈ I and ` = k, M keeps that element on its same position.

However, when ` /∈ I, M moves that mass to the optimal target k(`).

To see how to use M to solve the KF equation, we follow the “operator splitting method” from

Achdou et al. (2017) (see their numerical appendix). Namely, defining gn = g(tn), n = 1, . . . , N ,

we use the following algorithm:

1. Given gn, find gn+ 1
2 from

gn+ 1
2 = MTgn (C.19)

2. Given gn+ 1
2 , find gn+1 from

gn+1 − gn+ 1
2

∆t
= (AM)Tgn+1 (C.20)

3. Iterate until convergence.

This algorithm allows to tackle two crucial problems when computing the stationary distribution.

(i) how to treat density at grid points within the adjustment region. (ii) how to treat grid points in

the inaction region in which idiosyncratic shocks from state variables (summarized in the matrix

A) moves them towards the adjustment region.

Step 1 solves the first problem by moves mass from the adjustment region to their optimal

targets in the inaction region. Step 2 solves the second problem by using AM as the new transition

matrix. Recall that A is a Poisson transition matrix in which rows denote the starting position of

a Poisson process and columns the finishing position. Thus, for each row `, M takes the entries

A`,k that end up in the adjustment region, and moves them to columns k∗(`) corresponding to

their adjustment target. Note that AM is still a valid Poisson transition matrix as M only moves
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elements from columns and thus, all rows still sum to zero and diagonal elements keep their required

properties.54

Appendix D: Proofs

D.1 Derivation of the HJBQVI

This subsection derives the HJBQVI presented in Eq. (13). To do so, assume a discrete-time

environment, with time periods of length ∆ and a discount factor given by β(∆) = e−ρ∆. As in

Section 3, labor income is given by y1, y2. Transition probability from income yj to y−j is given

by 1 − pj(∆), where pj(∆) = e−λj∆ is the probability to keep their current income.55 Note that

the discrete-time analog of the households problem without adjustment can be summarized by the

following Bellman equation

υj(at, bt) = max
c

u(ct)∆ + β(∆)E [υj(at+∆, bt+∆)] (D.1)

s.t. at+∆ = rat at∆ + at (D.2)

bt+∆ = (yj + rbtbt − ct)∆ + bt, (D.3)

for j = 1, 2. Given the probability pj(∆) to keep the current income, we have that Eq. (D.1) can

be written as follows

υj(at, bt) = max
c

u(ct)∆ +β(∆)
{
pj(∆)E [υj(at+∆, bt+∆)] + (1− pj(∆))E [υ−j(at+∆, bt+∆)]

}
(D.4)

For a small enough ∆ we have

β(∆) = e−ρ∆ ≈ 1− ρ∆ (D.5)

ρj(∆) = e−λj∆ ≈ 1− λj,∆ (D.6)

and thus substituting into (D.4)

υj(at, bt) = max
c

u(ct)∆+ (1−ρ∆)
{

(1−λj∆)E [υj(at+∆, bt+∆)]+λ−j∆E [υj(at+∆, bt+∆)]
}
, (D.7)

54Namely, diagonal elements are still non-positive, while the remaining elements are non-negative.
55The derivation presented in this subsection can be easily extensible to a different process for labor income.
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re-arranging terms

υj(at, bt) = max
c

u(ct)∆ + (1− ρ∆)
{
E [υj(at+∆, bt+∆)] + λj∆E [υ−j(at+∆, bt+∆)− υj(at+∆, bt+∆)]

}
(D.8)

Subtracting (1− ρ∆)υj(at, bt), dividing by ∆ and taking ∆→ 0 we get

ρυj(at, bt) = max
c

u(ct) +
E[dυ(at, bt)]

dt
+ λj (υ−j(at, bt)− υj(at, bt))} (D.9)

Finally, we need an expression for the second term on the right-hand side of Eq. (D.9). Given that

ra follows Eq. (4), by Ito’s Lemma

dυ(at, bt) =

Å
∂bυ(at, bt)(yt + rbtbt − ct) + µa∂aυ(at, bt) +

σ2a2

2
∂aaυ(at, bt)

ã
dt

+σa∂aυ(at, bt)dWt,

(D.10)

taking expectations and noticing that E[dWt] = 0

E[dυ(at, bt)]

dt
= ∂bυ(at, bt)(yt + rbtbt − ct) + µa∂aυ(at, bt) +

σ2a2

2
∂aaυ(at, bt) (D.11)

Finally, plugging this equation into (D.9) yields Eq. (10). To recover Eq. (13), just note that from

the constraint in Eq. (9), υ(a, b)− υ∗(a+ b) ≥ 0.

D.2 Proof of the Merton Rule

Given no labor income, CRRA utility and no frictions in the financial markets, the household’s

problem can be written as

max
{ct},ω

E0

∫ ∞
0

e−ρ t
c1−γ
t

1− γ
dt

s.t. ȧ = at
(
ω(rat − rbt ) + rbt

)
− ct

drat = µdt + σdWt,

(D.12)

where the HJB equation is given by

ρυ(a) = max
c,ω

u(c) + υ′(a)
[
at
(
ω(µ− rb) + rb

)
− c
]

+ υ′′(a)
(σ aω)2

2
(D.13)
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To find the optimal c∗, ω∗ we use a guess-and-verify strategy: guess

υ0(a) =
B−γ0

1− γ
a1−γ, (D.14)

with B0 a constant to be determined. Then υ′(a) = (B0a)−γ and υ′′(a) = −γB−γ0 a−γ−1. From the

FOC in Eq. (D.13)

[c] : c−γ = v′(a) =⇒ c = B0a (D.15)

[ω] : υ′(a)(µ− rb)a+ υ′′(a)σ2a2ω = 0 =⇒ ω =
υ′(a)(µ− rb)
−υ′′(a)σ2a

(D.16)

Using Eq. (D.14) in Eq. (D.16) one can obtain Eq. (23). For completeness, replacing Eqs.

(D.15)-(D.16) in Eq. (D.13)

ρ
B−γ0

1− γ
a1−γ =

(Baa)1−γ

1− γ
+(B0a)−γ

ï
a

Å
(µ− rb)2

γσ2
+ rb
ã
−B0a

ò
−γB−γ0 a−γ−1σ

2a2(µ− rb)
2(γσ2)2

(D.17)

Then rearranging terms
ρ

1− γ
=

γB0

1− γ
+

(µ− rb)2

2γσ2
+ rb −B0 (D.18)

Lastly, solving for B0 one can determine the missing parameter

B0 =
1

2

ï
ρ+ γ + 1− (1− γ)rb − 1− γ

γ

(µ− rb)2

2σ2

ò
� (D.19)
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